Meine Position
Complex Magnetic Nanostructures

Complex Magnetic Nanostructures

Synthesis, Assembly and Applications

Bewertung abgeben
CHF 259.50
speech-bubble-svg Beschreibung


This book offers a detailed discussion of the complex magnetic behavior of magnetic nanosystems, with its myriad of geometries (e.g. core-shell, heterodimer and dumbbell) and its different applications. It provides a broad overview of the numerous current studies concerned with magnetic nanoparticles, presenting key examples and an in-depth examination of the cutting-edge developments in this field.

This contributed volume shares the latest developments in nanomagnetism with a wide audience: from upper undergraduate and graduate students to advanced specialists in both academia and industry. The first three chapters serve as a primer to the more advanced content found later in the book, making it an ideal introductory text for researchers starting in this field.

It provides a forum for the critical evaluation of many aspects of complex nanomagnetism that are at the forefront of nanoscience today. It also presents highlights from the extensive literature on the topic, including the latest research in this field.

1. Granular magnetic nanostructures: An overview of finite size, dipolar interactions and surface effects on the magnetic properties   1.1 Introduction 1.2 Special Features of Magnetic Nanoparticles    1.2.1 Finite Size Effects Single domain Limits and superparamagnetism: Brief Introduction Surface Effects    1.2.2 Magnetic Nanoparticles Aggregates Classical Langevin Function Approach Size distribution  Overview Experimental Magnetic Measurements  Measuring time and relaxation time  DC Magnetic Properties  Magnetization Curves  Zero field Cooled and field cooled curves  Thermoremanent Magnetization  Isothermal Remanent magnetization    1.2.3 Different kinds of Interaction in Granular magnetic nanosystems The Role of Interactions on the Magnetic properties Models    1.2.4 Conclusion   2.  Size and Shape controlled liquid phase synthesis of magnetic nanoparticles: recent updates   2.1 Introduction 2.2 Basic Mechanism on the formation of Magnetic nanoparticles    2.2.1 Nucleation: Burst of Nucleation Concept    2.2.2 Methods for the isolation of Nucleation and Growth; Numerical Simulation of Burst Nucleation    2.2.3 Growth Mechanism 2.3 Novel Synthesis method for the size and shape controlled Magnetic nanoparticles    2.3.1 Classical Synthesis by Coprecipitation    2.3.2 Hydrothermal and High-Temperature Reactions    2.3.3 Polyols method    2.3.4 Sol-Gel Reactions    2.3.5 Electrochemical techniques    2.3.6 Flow Injection Syntheses 2.3 Protection and surface stability magnetic nanoparticles    2.3.1 Inorganic materials    2.3.2 Polymer Stabilizers       2.3.3 Monomeric Stabilizers    2.4 Strategies to control the size and shape    2.5 Conclusions   3. Bimagnetic soft/hard and hard/soft magnetic core-shell nanoparticles with diverse application   3.1 Introduction 3.2 fundamental Phenomenology: Importance of coupling between soft and hard bimagnetic nanocrystals 3.3 Chemical synthesis approaches  to obtain multifunctional nanosystem    3.3.1 Surface treatment of  nanoparticles    3.3.2 Two Step Seed-mediated growth method 3.4 Characterization Strategy 3.5 Current and potential applications    3.5.1 Magnetic media recording    3.5.2 Permanent magnets    3.5.3 Microwave absorptions    3.5.4 Biomedical applications 3.6 Conclusion and outlook   4. Magnetic nanoparticles probed by synchrotron radiations based on X-ray absorption method: spin polarization and Charge transfer mechanism   4.1 Introduction 4.2 X-ray absorption spectroscopies in synchrotron radiation facilities     4.2.1 X-ray absorption fine structure     4.2.2 X-ray magnetic circular dichroism 4.3 Brief overview of different types of nanoparticles     4.3.1 Core-shell nanoparticles     4.3.2 Heterodimer nanoparticles     4.3.3 Dumbbell types of nanoparticles     4.3.4 Flower types nanoparticles 4.4 d-band magnetism of Ag, Au, Pd and Pt nanoparticles     4.4.1 Magnetism in bulk metals     4.4.2 Induced magnetism in nanoparticle matrix     4.4.3 Intrinsic magnetic moment in metallic nanoparticles 4.5 Structural Study Aspect     4.5.1 XANES and EXAFS measurements     4.5.2 Analysis and Explanation     4.5.2 Computational Simulation 4.6 Element Selective Magnetic Study     4.6.1 X-ray Magnetic Circular Dichroism magnetometry     4.6.2 Sum Rules Approach     4.6.2 Spin polarization and charge transfer mechanism 4.7 Conclusion 4.8 Future Prospective   5. Bimetallic nanostructures with magnetic and noble metals: Synthesis and applications   5.1 Introduction 5.2 Diversity of architectures of bimetallic nanostructures     5.2.1 Zero-dimensional     5.2.2 1-dimensional     5.2.3 Bimetallic assembly 5.3 Advance in the characterization of bimetallic nanostructures 5.4 Structure–property relationship of bimetallic nanostructures     5.4.1 Magnetic Property     5.4.2 Optical Property     5.4.3 Catalytic Property 5.4 Important Applications     5.4.1 Magnetic media recording     5.4.2 Permanent magnets     5.4.3 Biomedical applications 5.5 Conclusion & Outlook   6.  Design of rare-earth doped iron oxide nanomaterials for future possibility in resonance imaging   6.1 Introduction 6.2 RARE EARTHS AND ORGANIC LIGANDS       6.2.1 Electronic spectroscopy of rare earth ions       6.2.2 Rare earth luminescence       6.2.3 Organic ligands Rare earth -diketonates complexes Rare earth complexes with calixarenes     Conformational properties of calixarenes     Acidity constants of the phenolic OH groups     Inclusion compounds     Rare earth complexes with carboxylic acids< 6.3 Synthesis of Fe3O4/calixarene RE3+ -complexes core-shell nanomaterials       6.3.1 Synthesis of the calixarene ligand       6.3.2 Synthesis of magnetite nanoparticles       6.3.3 Synthesis of Fe3O4@calix-Eu(TTA) nanomaterial       6.3.4 Synthesis of Fe3O4@calix-Tb(ACAC) nanomaterial 6.4 Synthesis of RE3+ -complexes grafted Fe3O4@SiO2 core-shell nanomaterials.      6.4.1 Magnetite nanoparticles      6.4.2 Fe3O4@SiO2 nanoparticles      6.4.3 TTA grafted magnetic core-shell nanostructures (Fe3O4@SiO2-TTA)      6.4.4 Fe3O4@SiO2-TTA-RE(L) nanomaterials 6.5 Application in Magnetic Resonance Imaging 6.6 Conclusions   7. Magnetic Nanohybrids for the water purifications: removal of heavy metals   7.1 Introduction 7.2  A brief report on water contamination by Heavy Metal 7.3  Functional Magnetic Nanomaterials       7.3.1 Normal Occurrence       7.3.2 Syntheses in Liquid Phase       7.3.3 Particle Characterizations  7.4 Major applications       7.4.1 nano zero Valent Iron (nZVI)        7.4.2 Magnetite (Fe3O4)       7.4.3 Maghemite (g-Fe2O3)       7.4.4 Hematite (a-Fe2O3)       7.4.5 Ferric hydroxide(Fe(OH)3)       7.4.6 Other mixed spinel ferrites 7.5 Nanotechnological Approach applied to water purifications       7.5.1 Adsorption Experiments       7.5.2 Effect of pH & Salinity       7.5.3 Finite size/shape effect       7.5.4 Effect of competing species       7.5.5 Thermal Effects       7.5.6 Effect of mixing and contact time       7.5.7 Effect of adsorbent dose/concentration 7.6 Commercialization of MNPs for polluted water treatment 7.7 Advantages & Disadvantages 7.8 Conclusion and future goal   8. Superparamagnetic composite based GO/rGO for the multimode biomedical applications  < 8.1 Introduction 8.2 Different family of Graphene nanomaterials 8.3 Important properties of Graphene based nanomaterials     8.3.1 Physiochemical properties     8.3.2 Optical Properties     8.3.3 Thermal & Electrical properties     8.3.4 Mechanical Properties     8.3.5 Biological Properties 8.4 Graphene/Graphene Oxide based magnetic nanocomposites 8.5 Biomedical applications 8.6 Conclusion and future prospects   9. Magnetic nanoparticle-based hyperthermia for cancer treatment: Effect of size and shape   9.1 Introduction 9.2 Fine Particle Magnetism    9.2.1 Concept of Single Magnetic domains    9.2.2 Spin Reversal Mechanism Magnetization reversal Magnetization reversal in liquid carrier    9.2.3 Stoner-Wohlfarth Model    9.2.4  Thermal Activation of Magnetization    9.2.5  Frequency Dependence of Hysteresis    9.2.6  Energy Barrier Distribution 9.3  Magnetic Hyperthermia    9.3.1  Heating Mechanisms    9.3.2 Magnetic Susceptibility Heating    9.3.3 Hysteresis Heating    9.3.4 Magnetic Stirring Effects    9.3.5 Effect of Distributed Systems Effect of Particle Size Distribution Effect of Anisotropy Distribution 9.4 Size and shape dependent based fluid hypothermia: A few examples from Literature 9.5  Conclusions and Future Work   10. Functionalized Magnetic nanohybrids structures for imaging and therapy applications   10.1 Introduction 10.2  Wet chemical based Seed-mediated growth towards functional nanohybrids     10.2.1 Superparamagnetic-plasmonic nanohybrids     10.2.2 Plasmonic-fluorescent nanohybrids     10.2.3 fluorescent-superparamagnetic nanohybrids 10.3 Surface functionalization and modification strategy     10.3.1  Inorganic materials     10.3.2 Polymer Stabilizers     10.3.3  Monomeric Stabilizers 10.4 Magnetic Nanotechnology for cancer treatments 10.5 Photothermal therapy 10.6 Nanohybrids for biomedical diagnosis and therapy 10.7 Conclusions and future work
Herausgegeben von

Surender Kumar Sharma, PhD, is Professor in the Department of Physics and Group Leader and Coordinator of the Functional Nanomaterials Laboratory at the Universidade Federal do Maranhão (UFMA) in São Luis, Brazil. Dr. Sharma has obtained his PhD degree in July 2007 from H. P. University, Shimla India. He has previously worked several years in research/academic positions in Brazil, France, Czech Republic, India, Mexico, focusing on the area of nanomagnetism and functional nanomaterials. At present he is an active member of post-graduate research program at UFMA and actively involved in research, teaching and supervising research students at UG/PG levels. He has been awarded FAPEMA Senior Researcher grants and to date has published more than fifty peer-reviewed articles and has attended numerous international conferences.

Springer Verlag
book-svg Format
464 Seiten
credit-card-svg Zahlungsarten
payment-einzahlungsschein payment-twint payment-mastercard payment-visa payment-american-express payment-post-finance payment-e-post-finance payment-apple-pay payment-google-pay samsung-pay
Bestellen Sie einfach auf Rechnung oder bezahlen Sie bequem und gebührenfrei mit Twint, Kreditkarte, PostFinance, Apple, Google oder Samsung Pay.
Kein Rückgaberecht
Bei diesem eBook hat entweder der Verlag (Hersteller) das Rückgaberecht ausgeschlossen oder eine Rückgabe ist aufgrund des Vertriebssystems nicht möglich.
  • Download
  • Download
SPIEGEL Bestseller