search-white-svg
Meine Position
i
Ein Tipp vom Eldar Team
Je mehr Sie bestellen, desto grösser Ihr Rabatt
Lieferbar
Generalized Convexity, Generalized Monotonicity: Recent Results
Buch
Buch
disk-white-svg
Fachbuch
1998

Generalized Convexity, Generalized Monotonicity: Recent Results

Recent Results

ISBN
EAN
978-0-7923-5088-0
9780792350880
Artikel-Nr.
KD8W74G
Kostenloser Versand
Rabatt
-1.8
%
CHF 306.00
CHF
300.44
Anzahl
1
Maximale
Lieferzeit
13
Arbeitstage
Donnerstag
14.10.2021
speech-bubble-svg Beschreibung
A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.
feather-svg
Stichwörter
complementarity
derivatives
duality
equilibrium
inequality
Mathematica
Optimality Conditions
optimization
probability
sets
variational inequalities
vector optimization
Zielgruppe
Research
Inhaltsverzeichnis
Preface. Part I: Generalized Convexity. 1. Are Generalized Derivatives Useful for Generalized Convex Functions? J.-P. Penot. 2. Stochastic Programs with Chance Constraints: Generalized Convexity and Approximation Issues; R.J.-B. Wets. 3. Error Bounds for Convex Inequality Systems; A.S. Lewis, Jong-Shi Pang. 4. Applying Generalised Convexity Notions to Jets; A. Eberhard, et al. 5. Quasiconvexity via Two Step Functions; A.M. Rubinov, B.M. Glover. 6. On Limiting Fréchet epsilon-Subdifferentials; A. Jourani, M. Théra. 7. Convexity Space with Respect to a Given Set; L. Blaga, L. Lupsa. 8. A Convexity Condition for the Nonexistence of Some Antiproximinal Sets in the Space of Integrable Functions; A.-M. Precupanu. 9. Characterizations of rho-Convex Functions; M. Castellani, M. Pappalardo. Part II: Generalized Monotonicity. 10. Characterizations of Generalized Convexity and Generalized Monotonicity, a Survey; J.-P. Crouzeix. 11. Quasimonotonicity and Pseudomonotonicity in Variational Inequalities and Equilibrium Problems; N. Hadjisavvas, S. Schaible. 12. On the Scalarization of Pseudoconcavity and Pseudomonotonicity Concepts for Vector Valued Functions; R. Cambini, S. Komlósi. 13. Variational Inequalities and Pseudomonotone Functions: Some Characterizations; R. John. Part III: Optimality Conditions and Duality. 14. Simplified Global Optimality Conditions in Generalized Conjugation Theory; F. Flores-Bazán, J.-E. Martínez-Legaz. 15. Duality in DC Programming; B. Lemaire, M.Volle. 16. Recent Developments in Second Order Necessary Optimality Conditions; A. Cambini, et al. 17. Higher Order Invexity and Duality in Mathematical Programming; B. Mond, J. Zhang. 18. Fenchel Duality in Generalized Fractional Programming; C.R. Bector, et al. Part IV: Vector Optimization. 19. The Notion of Invexity in Vector Optimization: Smooth and Nonsmooth Case; G. Giorgi, A. Guerraggio. 20. Quasiconcavity of Sets and Connectedness of the Efficient Frontier in Ordered Vector Spaces; E. Molho, A. Zaffaroni. 21. Multiobjective Quadratic Problem: Characterization of the Efficient Points; A. Beato-Moreno, et al. 22. Generalized Concavity for Bicriteria Functions; R. Cambini. 23. Generalized Concavity in Multiobjective Programming; A. Cambini, L. Martein.
feather-svg
Herausgeber/-innen
Herausgegeben von
Herausgegeben von
Publikation
Vereinigte Staaten
31.08.1998
speech-bubble-svg
Sprache
Englisch
book-svg Format
Hardcover
471 Seiten
23.4 cm
(Höhe)
15.6 cm
(Breite)
2.7 cm
(Tiefe)
862 g
(Gewicht)
package-svg Versand
Kostenloser Versand: Schweiz & Liechtenstein
Für den Versand nach Deutschland oder Frankreich werden die Versandgebühren der Schweizerischen Post berechnet. Diese werden Ihnen im Warenkorb für Ihre gesamte Bestellung berechnet.
subcategories-svg
Themen
Unterkategorie
Volkswirtschaft
Unterkategorie
Optimierung
Zurück
Zum Start
S
SPIEGEL Bestseller
Hauptkategorie