Erhältlich:
Nicht auf Lager
The Elements of Statistical Learning
Data Mining, Inference, and Prediction, Second Edition
Produkt bewerten
Erhältlich:
Nicht auf Lager
Zustellung: Mo, 16.03.2026
Versand: Kostenlos
-20.2 %
CHF 103.–
CHF 82.23
Beschreibung
This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting--the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.
Spezifikationen
Sprache
- Englisch
Autor
- Trevor Hastie
- Robert Tibshirani
- Jerome Friedman
Thema
- Mathematische Statistik: Stochastik
- Datenbanken: Data Mining
- Künstliche Intelligenz: Allgemein, Wissensbasierte Systeme
Kollektion
- Springer Series in Statistics
Zielgruppe
- Research
Auflage
- 2
Erscheinungsjahr
- 2009
Erscheinungsland
- USA
Format
- Buch (Hardcover)
Anzahl Seiten
- 745
